
~_.]~ JOURNAL OF 
GEOMETRYa~D 

PHYSICS 
ELSEVIER Journal of Geometry and Physics 18 (1996) 349-380 

Hamilton formalism in non-commutative geometry * 

Wolfgang Kalau l 

Johannes Gutenberg Universitgit, lnstitut fiir Physik, 55099 Mainz, Germany 

Received 21 October 1994; revised 17 February 1995 

A b s t r a c t  

We study the Hamilton formalism for Connes-Lott models, i.e. for Yang-Mills theory in non- 
commutative geometry. The starting point is an associative ,-algebra A which is of the form ,,4 = 
C (1, ,As), where .As is itself an associative ,-algebra. With an appropriate choice of a K-cycle over 
,,4 it is possible to identify the time-like part of the generalized differential algebra constructed out of 
,,4. We define the non-commutative analogue of integration on space-like surfaces via the Dixmier 
trace restricted to the representation of the space-like part .As of the algebra. Due to this restriction 
it is possible to define the Lagrange function resp. Hamilton function also for Minkowskian space- 
time. We identify the phase-space and give a definition of the Poisson bracket for Yang-Mills theory 
in non-commutative geometry. This general formalism is applied to a model on a two-point space 
and to a model on Minkowski space-time x two-point space. 
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I .  I n t r o d u c t i o n  

In the last few years it has turned out that Connes '  non-commutative geometry provides a 

framework which allows for new qualitative insights in the spontaneous symmetry breaking 

mechanism of Yang-Mills theories. The cornerstone of this approach is a generalization of 

the algebra of differential forms and its corresponding differential. This has been used to 

construct models for the electroweak interaction [ 1,2] and Grand Unification [3,4]. Since the 

generalization of the differential algebra and its differential is not unique there are alternative 

models for the electroweak interaction, like the one developed by the Marseille and Mainz 
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groups [5-7]. However, all models have in common that the Higgs field is interpreted as a 
part of the generalized connection form, although the precise form of the Higgs potential 

depends on the model chosen. 
Another feature, which is common to all models so far, is that they are purely classical 

models, i.e. non-commutative geometry has been used to derive classical actions. In this 

approach some coupling constants, like the Higgs mass and the top mass in the Connes-Lott 
model, appear naturally restricted. However, such relations at the classical level cannot be 
translated to relations at the quantum level in an obvious way [8]. The reason for this is 

that it is not known so far how to quantize a theory in the framework of non-commutative 
geometry and for the usual quantization procedure it does not matter if some coupling 

constants of the classical action are fixed by hand or by some general principles of non- 
commutative geometry. Therefore it seems desirable to have a translation of the usual 

quantization procedure into the language of non-commutative geometry in order to get new 

insight in quantized Yang-Mills theory. 
The generalization of geometry to non-commutative geometry is achieved by translating 

geometrical concepts into an algebraic language where conventional geometry corresponds 
to commutative algebras. The generalization is then obtained by extending those concepts 

to non-commutative algebras. 
The quantization procedure which is closely related to algebra is the canonical quanti- 

zation method. This approach to quantum theory is based on the Hamilton formalism. The 
purpose of this article is to develop a Hamilton formalism for (generalized) Yang-Mills 
theories in non-commutative geometry as they were introduced in [ 1,2]. 

This article is organized as follows. In Section 2 we give a motivation for the structure 

A = C (I ,  .As) of the associative ,-algebra ,,4 which is the starting point for the derivation of 

Yang-Mills theory in non-commutative geometry. The universal differential enveloping al- 
gebra and the concept of finitely summable K-cycles are briefly reviewed in Section 3 where 

we construct a K-cycle which is appropriate for our purpose. In Section 4 the generalized 
differential algebra ~o ,A of Connes [2] is discussed where we use the structure on ,A and 
the K-cycle, introduced in the previous sections, to show that there is a split of ,.(2D.A into a 
"space-like" and a "time-like" part. The trace theorem of Connes [ 14] is used in Section 5 
to define an inner product on 12o.A. This definition differs from the usual definition in the 

sense that it corresponds to an integration on a "space-like" surface. As a consequence it is 
possible to define it also on space-time geometries with Minkowski metric. After a brief 

review of Yang-Mills theory in non-commutative geometry as it was introduced by Connes 
and Lott [1,2], the Lagrange function and the Hamiltonian for Yang-Mills theory are de- 
fined in Section 6. The formal construction ends with the definition of the Poisson bracket 
and time evolution in Section 7. In Section 8 the formalism is applied to two examples, 
namely to a discrete space and to Yang-Milis theory with symmetry breaking. The article 
ends with some conclusions in Section 9. 
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2. The algebra .A 

Hamilton formalism is related to Cauchy surfaces in space-t ime and the separation of 
time which implies that the space-t ime manifold M has the topology 

M = E x  S ,  (2.1) 

where R corresponds to time and S to a (compact) space-like manifold. As a consequence 
the corresponding C*-algebra of  continuous functions (vanishing at infinity) Co(M) is of  
the form 

Co(M) : CO(E) ® C( Z )  : Co(E, C( Z )  ), (2.2) 

where C0(E) ® C(27) denotes the completion of the algebraic product of  C0(E) and C ( Z )  

and Co(E, C ( Z ) ) ,  or more generally C0(E, .A), is the algebra of  continuous functions over 
R with values in C ( Z )  resp. with values in some normed algebra .A. 

The starting point of  Connes generalization of differential forms is an associative 

, -a lgebra  ..4 (a subalgebra of  a C*-algebra). Eq. (2.2) motivates us to require that .,4 has 
some additional structure which allows to introduce "time" to the formalism of generalized 

differential forms. Thus we postulate that 

.,4 = C(I , .As) ,  (2.3) 

where I is either E o r  S 1 and .As is a normed associative , -a lgebra with unit, possessing a 

finitely summable K-cycle.  If  .As is a C*-algebra we have 

,,4 = C( I ,  .As) = C ( I )  ® .As, (2.4) 

where C ( I )  ® As again denotes the completion of the algebraic product of  C(1) and .A~. 
Since .As has a unit we can identify C(1),  the algebra of  continuous functions on I,  as a 

subalgebra of .A by 

it : C(1) ~ .A, i t ( f )  = f ® ls, f E C(1),  (2.5) 

where ls denotes the unit element in .As. 
We shall assume that .A has a unit element. If I is compact (i.e. I = S 1) then C ( I )  and 

therefore also ,,4 has a unit element. If I ----- R then Co(I) does not have a unit. However 
we can always formally add a unit element to Co(I) which induces a unit element in .A. 
Furthermore we can use the unit element It of C ( I )  to identify .As as a subalgebra of .A: 

is : .As - -+ ,,4, is(a) -- It ® a, f c .As. (2.6) 
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3. The  universal  differential envelope and K-cycles over  .A 

In this and the subsequent section we follow Connes construction of generalized differen- 
tial forms [2]. However, we will focus on the structure of-A = C(I,  .As) which will lead to 

a "time-split" in the generalized differential algebra. For details of  the general construction 

we refer to [2,9,10]. 
The first step is to construct a bigger algebra ~2-A by associating to each element A E .,4 

a symbol 6A. 12-A is the free algebra generated by the symbols A, 6A, A 6 ..4 modulo the 

relation 

6(AB) = 6A B + A 8B. 

With the definition 

(3.1) 

6 ( A o 6 A j . . . 6 A k )  :=  6 A o 6 A I . . . 6 A k ,  6 ( 6 A l . . . 6 A k )  : = 0  (3.2) 

12.A becomes a M-graded differential algebra with the odd differential 6, 6 2 = 0. S2.A is 

called the universal differential envelope of A. By defining 

6(a)* = - 6 ( a * ) ,  (3.3) 

the , -operat ion is extended uniquely to I2-A. 
The next element in the construction is the K-cycle  (7-/, D) over ..4. It consists of  a Hilbert 

space 7-/with a faithful ,-representation Jr, 

zr : ,,4 ~ /3(7-/), (3.4) 

where/3(7-/) denotes the algebra of  bounded operators on 7-/. The second part of  the K-cycle 

is an unbounded self-adjoint operator D on ~ .  Since the K-cycle should also reflect the 
structure given by Eq. (2.3) let us first discuss the representation zr a little bit further before 
we come to structure of  D. However, the main strategy will be to construct the K-cycle 

(7-/, D) over .,4 out of  K-cycles  (~s,  Ds) over .As. 
Suppose 7-/s is a (separable) Hilbert space with an inner product (., ")s and a faithful 

,-representation ~'s, 

5"s :-As ' /3(~s) .  (3.5) 

~ s  can be extended to a bigger Hilbert space 

= L2(I,  7-Is) (3.6) 

with the inner product 

= f dt(q,(t), 
1 

The representation 7~s on 7-/s induces a representation Zrs on 7-/of .As, 

(3.7) 

n's : .As ~ C(I , /3 (~s) )  C/3(7-/), (3.8) 
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by identifying/3(7-/,0 with the subalgebra of  operators in C ( I , / 3 ( ~ s ) )  which are constant 

in t 6 1. There is also a representation ~rt of C(I ) ,  

7rt : C ( I )  ~ C(I,13(TYs)), Jrt( f)  = f i d s ,  f E C( I ) ,  (3.9) 

where ids denotes the unit element in/3(TYs). Because of  Eq. (2.3) these two representations 
induce a faithful .-representation Jr of  -A, 

Jr : .3, ~ C(1,13(7-(s)) (3.10) 

with 

zr ( f  ® a) = 7rt(f)zrs(a) = 7rs(a)zrt(f), f ® a E ,,4. (3.11) 

Strictly speaking, Zrs and rrt define a representation of a dense subalgebra of  ,A, which can 

be extended to a representation of ,,4. 

Let us now turn to the second element of  the K-cycle, the operator D on 7-/. The general 

conditions to be fulfilled by this operator are [2]: 

(i) D is self-adjoint; 

(ii) [D, rr(A)] is a bounded operator; 

(iii) D is unbounded with a compact inverse (modulo finite rank operators) such that I D] I 

is d + summable for some d 6 N; 

If ,.4 is a C*-algebra condition (ii) holds only on a dense subalgebra of .,4 in general. 

Therefore we denote in the following by .,4 a dense subalgebra of  a C*-algebra such that 

(iii) holds for any element of A, i.e. -A = Coo( l ,As ) ,  where As is also a suitable dense 

subalgebra of  a C*-algebra. However, since D is closely related to the metric structure of 

the underlying manifold, which is also the case for non-commutative geometries [2], I we 

have to impose further conditions on D. They should reflect the topology which is encoded 

in the structure (2.3) of  ..4. This motivates the additional requirement that D is the sum of 

two operators 

D = Dt + Ds (3.12) 

with 

(iv) [Dt,zrs(a)] = 0 and [Ds,rrt( f)]  = O, Y f  ~ C( I ) ,  Ya 6.As; 

(v) [Dt,Jrt(f)][Ds, Zrs(a)] + [Ds,zrs(a)][Dt,Jrt(f)] = O, ¥ f  ~ C( I ) ,  'Ca ~ As; 
(vi) D~ c C°°(I ,  Os) 2 (where Os denotes the algebra of  operators on ~ s )  thus D~ is 

as a smooth 1-parameter family of  operators on 7-Is. Ds (t) fulfills conditions (i)-(iii) 

with -A replaced by -As, 7-[ replaced by 7Ys. In other words (~s ,  Ds(t))  is a smooth 

1-parameter family of  K-cycles over -As. 
We now show how a K-cycle (7-/, D) over A can be constructed out of a l-parameter 

family of K-cycles (~s ,  Ds(t)), t 6 I ,  over -As. Having the 3 + 1-dimensional case in 

mind, we do not assume that there is a grading on ~s ,  i.e. an automorphism y with y2 = 1 

i In fact, if D is a Dirac operator it is possible to construct a gravity-action by taking the Wodzicki residue 
of an appropriate inverse power of D [11-13]. 

2 Note, this implies the second part of (iv). 
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and [y,/5~]+ = 0 3 and b, ,rrs]  = 0. However, a substitute for this automorphism can 

always be constructed by extending ~ ,  which also allows to drop the condition that b~ is 
self-adjoint. We extend the Hilbert space by C2: 

7"~s = 7~s @ C 2, 7rs = rgs ® lc2 (3.13) 

and 

(o 
D s =  l~st . (3.14) 

The Hilbert space 7-/s and the representation Zrs can be extended to a Hilbert space 
and a representation Jr of  .A in the above mentioned manner. What is still missing is the 

operator D. More precisely the part Dt of D has to be specified. A natural choice is Dt ~ Ot. 
However, condition (v) has to be taken into account. Therefore we introduce an element 
2/o 6/3(7-/) (a substitute for the grading) with the following properties: 

(y0) 2 : Jr(N),  N E .A; 

[y°,zr(A)]  = 0, YA E .A; ( y o ) - I  exists 
(3.16) 

and 

yot  = _ y o ,  (3.17) 

where the same block structure as in Eq. (3. l 3) is used. Such an element always exists since 

,,4 has a unit element. We now define Dt by 

Dt = yOot (3.18) 

The anti self-adjointness of  y0 (Eq. (3.17)) ensures the self-adjointness of D = Dt + Ds. 

It is straightforward to check that for this choice of  D = Dt -}- Ds, w i t h  Dt resp. D~ defined 
as in Eq. (3.18) resp. (3.14), and 7-/ (7-/, D) is a K-cycle over .A = C ~ ( I ,  .As) which fulfills 
conditions (ii) and (iv)-(vi). Condition (iii) is not needed for the definition of the generalized 
differential algebra. It is crucial for the definition of the operator theoretic substitute for 
integration. However, since we are only interested in a substitute for integration on "space- 
like" surfaces we can replace this condition on D by an analogous condition on Ds (vi). 
However, this condition on D and the self-adjointness of  D is related to the Euclidean 
signature of  the metric of  the underlying manifold. As we shall see in Section 4, with the 

choice ),0 = ?/0t one obtains an operator D corresponding to an underlying manifold with 
Minkowski metric. 

3 [., .]+ denotes the anti-commutator. 



W. Kalau/Journal of Geometry and Physics 18 (1996) 349-380 

4. The generalized differential algebra 

355 

Having introduced the generalized differential algebra ~2A of A and a K-cycle (7-/, D) 

over A we can now put these elements together in order to define a generalized differential 

algebra as it was introduced by Connes [2]. We begin by extending the ,-representation 

to a ,-representation of  the algebra S2A: 

Zro : ~O  ~ B(7-/), (4.1) 
ZrD(Ao6AI . . .  6Ak)  = yr(A0)[D, zr(Al)] • • • [D, Jr (Ak)]. 

However, there is another possibility to extend Jr to a representation of S2A which is useful 

for our purpose: 

JrD~ : ~ D  ) B(H) (4.2) 
ZrD~(Ao6AI " "  6Ak)  = z r ( A o ) [ D s , r c ( A l ) ] . . .  [Ds , J r (Ak ) l .  

Obviously the kernel of zros is much bigger than the kernel of JrO. For instance 3C ~ (I) C 

S21A is contained in the kernel of rro~ because only the "space-like" part Ds of  D is used 

in the definition (Eq. (4.2)) of zrOs. 

On the images of JrO resp. ~ros the differential 6 on Y2A does not induce well-defined 

differentials. Therefore one has to divide out two-sided graded differential ideals. For Jro 

such an ideal is given by 

j k  = ker Jro A 12kA + 3(ker Jro A ~ k - l A ) ,  

On the quotient algebra ~2D.A, which is defined as 

j = ~ j k .  

k=l 
(4.3) 

S 2 ~ A -  S2kA 
j k  ' ~ O A  = ( ~  S2~D A, (4.4) 

k=l 

there is a differential d with d 2 = 0 which is uniquely defined by the differential 6 on Y2A 

as 

d(CrDJrD(CO)) = ~rDJrD(SCO), cO E S2D, (4.5) 

where o- D denotes the map 

Cr o • JrO(ff2k~A) ~ S-2kO.A. (4.6) 

Thus S-2DA is a generalized graded differential algebra [2]. 
Of course, it is now possible to define the differential ideal associated to Y/'Os in a com- 

pletely analogous way as for JrD- This would also lead to a differential algebra with a 

differential which is uniquely defined by the differential on ~2,A. However, such a differ- 
ential algebra would not have an interpretation as the "space-like" part of  ~D-4  in general. 

Therefore one has to divide out a bigger differential ideal. One is led to the correct ideal by 

the two lemmas following the next little preparing lemma. 



356 

L e m m a  1. For I : S 1 there is an 

r 1 = Z f ( i ) ~ g  (i) E ff21,A, 
i 

such that 

~D(T]) = yO. 
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f ( i ) ,g ( i )  E C ( l )  (4.7) 

(4.8) 

I f  I = ~ there is a sequence 

V ~ f ( i )~g ( i )  E .o A f ( i )  ~(i) On ~ n n . .1  E C ( I )  = , an '¢gn 
i 

such that 

lim ~D(YIn) = yO 

in the strong operator topology of/3(7-[). 

(4.9) 

(4.10) 

Proo f  If I = S 1 let Ui be a finite open cover of  S l , f / t h e  corresponding partition of  unity 

and gi some smooth functions on S ~ with Otgi = 1,¥t  c Ui then r/defined as in Eq. (4.7) 

fulfills Eq. (4.8). 

If  I = R there are no bounded functions in C~°(~)  such that 17 can be defined as in 

Eq. (4.7). However let {an}ne~,an+l > an > 0 be a sequence in R with an --+ oo as 

n ~ oo. Define Un = ] - a n ,  an[ and choose fn ,  gn E C ~ ° ( R ) s u c h  that f n ( t )  = 1, t E Un, 

I fn( t) l  < 1, t •Un and Otgn(t) = 1, t E Un, IOtgn(t)l < 1, t ¢~Un. For Tln = fn6gn i t i s  

(tI t ,  (TrD(rln) -- yO)t f f )  = f d t ( f n O t g n  - 1)(kO, y0qJ)s 

R 
On 

- - a  n 

Thus 7rD(Yln ) converges in the strong operator topology to y0. 

(4.11) 
~ e ~ .  

[] 

If  I = ~ we add a formal limit point r /o f  the sequence 0n to ~21,4 with 

zrD(r/) = y0. (4.12) 

This element is formal since we have not specified a topology on S2o which would allow 

to consider convergence of  On in I2O. However, except for the definition of  the map T, the 

element r/ will appear only as an argument of  gD or 7rOs and therefore the limit is well 

defined in/3(7-/). Furthermore we note that 

~Ds(O) : 0 .  (4.13) 

L e m m a  2. For o9 ~ I2k.A we have 

Yt'D(Og) = ~Ds(Og) -]- ~D(0t), 0t E kern'D, 71 [2k,A. (4.14) 
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Proof  We prove this lemma by defining an algebra homomorphism T on I2.A which is an 

projection, i.e. T 2 = T. I2.A is generated by the zeroth and first degree and therefore it is 

sufficient to define T on those spaces. Since .A = C°°(I , .As)  it is OtA ~ ,4 YA E ,4. We 

use this and the element r / to define 

T ( A ) =  A, A E ,4 ,  
T(3A) = 3A - ~tAo; T(O) = O, A E .,4. (4.15) 

For an arbitrary degree k > 1 one obtains 

T • $2k.A > ~k .A,  T ( A o 6 A I . . . 3 A k )  = A o T ( 3 A 1 ) . . .  T(SAk) .  (4.16) 

but 

ZrD(3Ot) = 2[Dt,  Jrt(f)][Dt,  rrt (g)] = 2(y°)2OtfOtg = ~r(N)~(OtfOtg) E 7r(.A), 

(4.23) 

i.e. 3or 6 3 "2 and with such elements all of  sr(.A) can be generated. Thus the lemma is 

proved. [] 

Suppose co ~ ker 7~ o O ~('2k.A. Lemma 2 allows us to write 

0 = ~D(co) = ~Os (co) 4- 7go(Ot)" (4.24) 

Since 

zro(3A) = [Ds,rr(A)] + [Dt,rr(A)] = zrOs(SA) + 7rD(OtArl), (4.17) 

this map has the useful property that for any co 6 S2A 

7170,,(O9) ~--- 7ro(T(co)), 7rOs((l -- T)CO) = 0. (4.18) 

It is rrD(I20.A) = ZrDs(QO.A) = 7r(M) and for any k it is 

reD(co) = zro(T(co)) + ZrO((1 -- T)co) = zros (co) + ~rD(~), '¢co ~ $2k.A (4.19) 

with ot ---- (1 - T)(co) ~ ker zros and the lemma is proved. [] 

Lemma 3. It is 

~o(,Z) Q ~ D ( J  2) C ~D(,.Q2.,4) (4.20) 

and thus there is a filtration on r rD(~.A):  

~D(,,(20.A) C ~D(~(22,A) C ~D(,.~24,A) C " ' '  (4.21) 
~rD(I21A) C rrD(S-23A) C r tD(I25A) C . . .  

Proof  Let us consider ot = ( f  ® 1)¢~ (g ® 1) 4- (g ® 1)8 ( f  ® 1) - 3 ( f g  ® 1 ) E ~ l .A. It is 

fro(or) = 0 (4.22) 
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Because of  Lemma 3 we cannot infer that ~ro(og) = 0 implies zros(og) = 0. Thus if we 
divide £2.A by the differential ideal associated to reds in an analogous way as for zro in 
Eq. (4.3) it may happen that the resulting differential algebra contains elements which are 
not elements of  £20.A and therefore it is not a subalgebra of  S2D.A. The correct differential 

ideal, which leads to a graded subalgebra of  S2D.A is constructed with the help of  the 

following ideal in ~2.A: 

IC 2k = o9 E $22k.A I qet E ~(22J A ,  ~Ds (o9 _a¢_ Or) = 0 , 

j=0 

~2k+l = o9 ~ ~ 2 k + l N  I 3~ e . . ~ x ? 2 J + I A ,  ~Ds(og+oO = 0  , (4.25) 

/ C =  ~ / C  k. 

k = l  

Let us also define the ideal/Co 

/Co k = ker rros A 12kA, 
00 

/Co = ~ / C ~ .  (4.26) 
k = l  

A two sided differential ideal A/" is obtained as in Eq. (4.3) by including the image of 8 

on/C: 

oo 

A/"k = / C  k + 6/C k-1 , A/" = (~.A/"k. (4.27) 
k = l  

The corresponding graded differential algebra S-2 ~-.A is then defined as 

$2kA 
12Ack,A -- A/. k , S2A; = ~ )  ~2X k. (4.28) 

k = 0  

Let us denote by aN,  the map on the quotient space, 

t7 N : TrDs ( f f2k .A)  > ~koA. (4.29) 

The relation of ~2DA and £2A;.A is determined by the relation of A/" and ,.7 and therefore 

it is useful to prove the following lemma. 

Lemma 4. It is 

/C k = (kerYrD N $2k.,4.) U/Co k 

and 

(4.30) 

.Afk = ffk t_J/Co k. (4.31) 

Proof. It is clear that (ker ZrD A ~2k.A) U IC~ C IC k. Thus we have to consider elements 
o9 c / C  2k with 
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k - I  

0 # YrDs(o9 ) = Z Y F D s ( o 9 2 j ) ,  O)2j E f22J.A. 
j=0 

Because of Lemma 2 there are a2j E/Co 2j and a E/c2k with 

]FD(o92j --  Ot2j) = YrDs(O)2j) ,  ~D(O9 --  Or) = ffD~(Og). 

We define o9' c 5"22k,A as 

k - I  
~- 09 - -  ol - -  --~.~ ( N - l r l ) 2 ( k - J )  (ogZj --  Ot2j ). o9! 

j=O 

Since 

7gD s (O9 --  o9') = 0 

and 

359 

(4.32) 

(4.33) 

(4.34) 

(4.35) 

(4.39) 

(4.40) 

(4.41 ) 

Therefore, with ~Ds (6 r ] )  = 0, we conclude that for any o9 6/Co 

ZrD~([3, T](og)) = 0. 

Furthermore it is for o9 ~/Co 

0 = rrO,(og) = YrD(Tog) 

and therefore 

Y r D ( S T o g )  C 7 r D ( J ) .  

(4.38) 

Thus 

[8, T ] ( A o 3 A I  . . .  3 A k )  = 3tAo~TT(3A1)... T(3Ak) 
k 

+ Z AoT(3AI)...  (6A) + (-1)J6(OtAjr])) . . .  T(6Ak). 
j=l  

ZrD(W') = 0 (4.36) 

we infer that o9 ~ (ker rrD N ,f22k,A) U/C 2k. The same is true for o9 6 /cZk+l and therefore 

Eq. (4.30) is proved. 

For the second part of  the proof  we compute [6, T]: 

3T(Ao3A1 ...3Ak) =3(AoT(3AI). . .  T(3Ak)) 

=6AoT(3A1)... T(6Ak) 
k 

+ y~  AoT(3AI)...  ( 6 A j  -+- ( - 1 ) J 6 ( O t A j r ] ) )  . . .  T(3Ak), 
j = l  

T3(AoSAI ...3Ak) = T(3Ao)T(6AI)... T(3Ak). (4.37) 
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On the other hand it is 

YgOs (80)) = 7rD(T652). (4.42) 

Together with Eq. (4.39) this proves Eq. (4.31). [] 

We now state the main result of this section which shows that 12~¢~A is the "space-like" 

part of 12D.A in the sense that there is a "time" differential dt and a "time-like" differential 
one-form dt in ~('2D.A. We then denote by "space-like" forms such elements in J2D.A which 

do not contain dt. 

Theorem 1. There is an element dt  E I21D.A such that for  any k 

d tw - ( - 1 ) k w d t  = 0 '¢w E Y2kD (4.43) 

and 

12ko.A = ~ . A  ~ I2~¢-l.Adt. (4.44) 

The differential d on $-2 D.A is given as a sum of  the two differentials ds and dt : 

d = ds + dt, (4.45) 

dt(~rOZrO(W)) = (--1)kcrD~rD(T(Otw))dt, 09 E I2k.A (4.46) 

with 

Ot(AoSAI • "" 6Ak) = OtAo~A1 • • • 8Ak 
k 

(4.47) 
+ Z ( - 1 ) k - J A ° S A I  " " ~ ( O t A j ) " "  6Ak. 

j = l  

Proof From Lemma 2 we know that ~rDs ( ~ A )  is a subalgebra of rro(I2A) = rros (12A) U 
rro(/C0) and hence 

~ YrDs (5"2k,A) 
k=0 7~o(Jk)  C ~2D~A (4.48) 

is a subalgebra of I2D.A. Because of Eq. (4.31) we can conclude that 

rros(S2kA) ~ rrO~ (s2kA) 

k=0 k=0 

From Eq. (4.30) we infer that 

~Ds ( A'2 k'A) Yr o (K~) 
~D(~.~k) [ '~  --  10}. JrD(J k) 

Thus we can decompose Y2D,A as follows: 

= a .a. 
~ D ( J k )  " 

-- 12~-.A. (4.49) 

(4.50) 

(4.51) 
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We proceed by identifying dt  as 

dt  = crozrD(O). (4.52) 

Because of  Lemma 3 we know that r/2 6 ,72 and hence dt 2 = 0. For any A o 6 A I .  Ak 

/C~ it is 

rro(Ao6Ai  . . .  8Ak) = 7rD(Ao)([Ds, 7ro(A1)] + 7rD(OtA1)nD(rl)) ' ' '  

• . .  ([Ds,JrD(Ak)] + nD(OtAk)2ZD(O)) (4.53) 
k 

= Z (--1)k-JnDs(AO~A1 "'" OtAj "'" ~Ak)nD(O) -4- 7rD(Ot), 
j = l  

where fro(c0 6 j k  denotes the sum of terms with a factor fro(0) k, k > 1. We also used 
condition (v) of D to anti-commute no(O) to the right. From Eq. (4.54) we infer that 

Jro (1C k) _ I'2~- I ,Adt. (4.54) 
n o ( J  k) 

Eq. (4.43) is also a consequence of condition (v) of  D. 

Since ~D.A is generated by ~21o.A and dt 2 = 0 it is sufficient to show Eq. (4.46) for all 

# 6 121oA. For any w 6 ~ A ,  let Ao3A1 E S21A be a representative, i.e. 

aNZrD~(Ao3A1) = w. (4.55) 

Let us first compute the action of  d~ on ~rozro (T (A06A1)), which is the image of  w in 

~('2DA , 

dstTDnD(T (Ao~A 1)) = crDTrD (T (6Ao~A 1)) 

= aD([Ds, n(Ao)][Ds,  n(A 1)]). (4.56) 

We use this to compute the action of  d on crD (Ao[Ds, n (A1)]) 

dCrD~D(Ao6A 1) 

= trDTrD(8(AoT(3A1))) 

---- cro(([Ds,zr(Ao)] + [Dt,rc(Ao)])ZrD(T(6AI)))  + trDrrD(Ao6T(6AI)) 

= dstrDZrD(Ao6A1) + ~rDnD(OtAoT(3AI)) + ODnD(T(Ao3(OtAI)) )d t .  (4.57) 

This shows that 

dt(CrDZrD(Ao6A1) ) = (d - ds)CrDZrD(T(AoSA1)) = trDrrD(Ot(Ao6AI)) (4.58) 

and the theorem is proved. [] 

5. The inner product on f2o.A and the Lorentz metric 

So far we have constructed a generalized differential algebra where we were able to 

identify the "space-like" and the "time-like" part because of  the structure ,,4 = C ~ ( I ,  .As) 
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of the algebra and the special form of the K-cycle  (7-/, D). Following the lines presented 
by Connes and Lott [1,2] it is now straightforward to reconstruct connection and curva- 

ture in this generalized non-commutative framework. However, there is still one important 
ingredient missing which is neccessary to define an action or a Lagrange function resp. a 

Hamilton function, the objects we are interested in. In conventional geometry one obtains 

an action or Lagrange function by integration over appropriate differential forms. In [14] 
Connes showed that the correct substitute for integration in non-commutative geometry is 
the Dixmier trace. It is this trace which is used in the definition of actions in [1,3,4]. How- 

ever, we want to derive a Hamilton function and therefore we do not have to integrate over 
the non-commutative "space-time" but we have to integrate over a "space-like" surface. As 

before we will use the additional structure of  .,4 and ( ~ ,  D) to define the correct operator 
theoretic substitute for integration on "space-like" surfaces which will be the Dixmier trace 

on 7-/s. 
Let us first briefly recall the definition of the Dixmier trace and some general results 

about the inner product on I2D.A defined via Dixmier trace. For a detailed account we refer 

to [2,9,10]. 
The Dixmier trace [ 15] is the unique extension of the usual trace to the class/2~1, ~)(7-() 

which is an ideal in the algebra of  bounded operators. The elements of  this ideal are char- 
acterized by the condition that for any T E £~1, ~ ) ( ~ )  the ordered eigenvalues )~i of  

[TI satisfy 

N 
1 Z X  i < sup ~ 0o. (5.1) 

N log/V i=0 

On this ideal the Dixmier trace Trio(.) is defined as functional with the property 

1 N-1 
Tro~(T) = lim Z Xi. (5.2) 

N ~ , c  log N i=0 

I f . 4  is an arbitrary subalgebra of  a C*-algebra with a finitely summable K-cycle  (7-t, D) 
then JD[ -d is in/2 (1' ~ ) ( ~ )  for some d 6 ~,  where d corresponds to the dimension of the 

underlying (non-commutative) space. Since 

Tro~(lD] -d)  > 0, (5.3) 

an inner product on :rD (,f2.A) is obtained by defining for each k 

(., .)k : 7rD(,Qk A) x 7rD(A'2k.A) > C, 
(:rO(wl),ZrD(W2)) k = Tro~(zrD(w~)rrD(W2)lDl-d), Wl,W2 ~ Y2kA, (5.4) 

which is positive if ZrD(W*) = ZrD(W)*, YW C ~2.A. 
Let us denote by 7-/I the Hilbert space completion of  ZrD(I2k.A) and let p(k) be the 

orthogonal projection of ~ k  onto the orthogonal complement of  ZrD(,.7 k) C 7-[~ then an 
inner product on S2D.A can be defined for each k by 

(aD(WI),CrD(W2)) k = (P(k)W1, P(k)w2),  WI, W2 E zrD(J-2k.A), (5.5) 
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which is positive if (., .) is positive. 

This allows to identify $2tD.A with a dense subspace of  7-(~ and hence there is a map 

c"  ~2~.A , ~ (5.6) 

k A_ with Im(c) = z r ( J  ) . 

In the case, where .A ---- Coo (.M) is the algebra of smooth functions on a compact spin- 

manifold A//and D = ~ is the Dirac operator, I2o.A is the usual (complexified) de Rham 

algebra [2] and the inner product is 

(Wl, W2) = f *Wl A tO2, Wl, tO2 G ~Qk,.4, (5.7) 
I /  

M 

where *wl is the Hodge dual of  wi. 

Let us now turn to our case where the algebra is of  the form A -- Coo(X, .AD where we 

would like to introduce a substitution for integration on a space-like surface. However the 

"space-like" part of .4 and ~ o . A  is characterized by .As and the smooth 1 parameter family 

of  K-cycles (7ls, Ds) over.As, which are finitely summable by assumption. Therefore there 

is some d (the dimension of the "space-like" part of the non-commutative space) such that 
for any t ~ X I Ds [-d is an operator on 7-/s with [Ds [-d 6 /~(1, Oo) (,7_/s) and 

Trto(lDsl-d)s > 0. (5.8) 

Here Tr~o(.)s denotes the Dixmier trace on £11"oo)(~s). Since for any t 6 I any 

W ~ rro($2o) is a bounded operator on ~ s  varying smoothly with t, 

(-, .)~ • rro(~k.A) × :rrD(~k.A) > Coo(X), 

(rrD(Oa),srD(w2))~ = Tr~o(rrD(w~)rrD(Oa)lDsl-d)s, ~ol,we ~ S2kA ¢5.9) 

defines a positive inner product on rrD(~.A) for any k and any (fixed) t ~ 1 if 

zrD(w*) = fro(w)*, '¢w ~ ~.A, a condition which is met in our case (see (vi)), i.e. 

(W, W)s = f ( t )  > O, VW c 7rD(S2A), gt  c 1. (5.10) 

With this inner product on 7ro(,f2,A) one can define an inner product on OD.A as in the 

general construction. Let us denote by 7-/ k the completion 4 of  YCD(~'-2k.A) with respect to s~r 
(', ")s and let Ps ~k) be the orthogonal projection of 7-/s~ onto the orthogonal complement of  

r t o ( J  k) then for each k 

.s2 x × , coo(x), 

(CrD(Wl),aD(W2))ks = (P}k)Wl, p}k)W2)s, W1, W2 E 7rD(J2~,A) (5.11) 

defines a positive inner product on ~(2D.A for any t E X. With this product we will define 

Lagrange functions and the Hamilton formalism. As in the general case there is a map 

4 We call a sequence convergent with respect to I., )s if it converges pointwise for all t 6 1. 
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cs : $2kD-4 > 7-[sjrk (5.12) 

and hence we can identify $2~-4 with a dense subspace of ~s~ .  
The definition of the inner product in Eq. (5.11) allows for an important freedom in the 

choice of the K-cycle over .4, which deserves some discussion. For any wl 6 $2~.4 C 
$2ko,A and any w2 E $2~-1-4dt C $2kD.4 it is 

(Wl, W2)s = (Cs(Wl),Cs(W2) )s = Troj(Cs(Wl)* C(W2) )s = 0, (5.13) 

since ¢s (Wl)*c (w2) contains an odd number of commutators with Ds which are off diagonal 
(with respect to the block diagonal structure of Eq. (3.15)). This proves the following lemma. 

L e m m a  5. The decomposition 

$2k.4 = $2kv,a ~) ,Q~v-I 4dt  (5.14) 

is orthogonal with respect to the inner product (., ")s. 

We have seen that condition (iii) of D, i.e. D has a compact inverse and I Ol -a 
£¢1,°°)(7-/), is crucial for the definition of the inner products (5.4) and (5.5). However, 
we will restrict ourselves to "integration on space-like" surfaces and hence use the inner 
products defined by Eqs. (5.9) and (5.11). Here we only need that Ds has a compact in- 
verse and that IOdl -a  ~ Z: ¢1, ~(7-ts)  for some d which is guaranteed by condition (vi). 
We can use this freedom and change the definition of Dt by choosing ),0 self-adjoint. As a 
consequence we find for any element ~o 6 $20,4 

(dsog)* = -ds (oP) ,  (dtto)* = dr(w*). (5.15) 

Following Chamseddine et al. [16] we introduce a generalized metric on $210.4.5 In 
this context the .4-module $210.4 is interpreted as the generalized cotangent bundle over a 
non-commutative space. We define the metric 

g(., .) : $210.4 × $210.4 , .4 (5.16) 

by the following equation 

(A ,g ( v ,w ) ) s  = -Tr~o(A*es(v*)cs(w)IOsl-a)s,  YA 6 .4; v , w  6 $21o.4. (5.17) 

This metric enjoys the property 

g(vA,  wB)  = A* g ( v , w ) B ,  YA, B E .4; v ,w  E $210.4. (5.18) 

An important property of  this metric is stated in the following theorem. 

5 Strictly speaking the metric is introduced on ,f21.A which is the Hilbert space completion of £21.A. 
However, we assume that the construction holds on I21.A. 
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Theorem 2. l f  y °, as defined in Eq. (3.16), is self-adjoint, i.e. 

t 
~'o = Zo (5.19) 

then g(., .), as defined in Eq. (5.17), is generalized Minkowskian metric, which is positive 
definite on ~)¢-4 and negative definite on the -4-module generated by dt. 

Proof Applying the arguments presented in [ 16] to our case, we conclude that g(., .) defines 

a positive definite Riemannian metric on £2~--4 C S21oA. From Lemma 5 we infer that 

g(v,dt)  = 0, Yv ~ $2~-4. (5.20) 

From the definitions in Eq. (5.9), Eq. (5.11) and the definition of y0 in Eq. (3.16) it follows 

that 

g(dt, dt) = _ y 0 y 0  = - N  ~ A (5.21) 

and the theorem is proved. [] 

This theorem completely justifies the terminology of "space-like" and "time-like" since 

with the choice y0t  = y0 it is possible to identify time like elements of  S2~A as elements 

with negative norm, i.e. elements v 6 12~-4 with 

g(v, v) = Ivl 2 < 0. (5.22) 

For the rest of  this article we will keep the choice ),0* = ),0, which means we are working 

on a non-commutative Minkowski space. 

We end this section with some further definitions and some assumption on the algebra 

.4 which will be useful in the Hamiltonian framework. The first definition is a slight gen- 

eralization of  Eq. (5.17). We associate to any v (l) E 12to-4, l > 0 a map it(v(l)), which is 

defined for all k _> 0 by 

(Wl,il(v(l))WZ)s = Yrw(Cs(W~)Cs((v(l))*)Cs(Wz)lD]-d)s 
= (1)Wl, tO2)s, VWl EE ff2kA, VtO2 E ff2g+/.A. (5.23) 

This map is well defined as can be seen by applying the arguments presented in [16] for the 
definition of  the metric. Thus we have defined a map which decreases the degree of  forms 

il(v(t)) k+t • I2 o .,4 , Y2koA. (5.24) 

For the second definition we have to make a further assumption on the algebra A and the 

K-cycle (7-/, D) over A. Namely that for any v c ~2gA, k > 0, there is a C,  ~ R such that 
for all w ~ S2ko - l A 

I(v, dw)sl 2 <_ Cv(w, W)s. (5.25) 

This condition is fulfilled, for example, if -4 = C ~ ( M )  and D is the Dirac-operator on 
M or if .4 is a finite dimensional algebra or if .4 is a product of  the first two cases. Thus 

Eq. (5.25) is fulfilled for the class of  algebras which has been used for model building in 
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physics so far. This condition ensures that there is a well defined adjoint operator d~' of  ds 
on S2kD.A, 

d* :  E2kD.A > 12~-J-A, (5.26) 

which is uniquely defined by 

(d*v,W)s := (v, dsw)s, ¥v E $2~-A, ¥w E E2~)-I-A. (5.27) 

Furthermore we assume that the smooth 1-parameter family of K-cycles (7-ls, Ds) is 

same [10], i.e. 

Tro,([W1, Wz]IDsl -a) = O, Wl, W2 E ZrD(J-2.A) (5.28) 

and 

il(v(l))(E2D.A) C $2D.A, d*(U2D.A) C ~f2D.A. 

These conditions are fulfilled in the above mentioned examples. 

(5.29) 

6. Lagrange and Hamilton function for Yang-Mills theory 

Now we have all basic objects at hand which are necessary to define a Lagrange function 

and the corresponding Hamilton function for Yang-Mills theory in non-commutative ge- 
ometry. However, we start with a brief exposition of Yang-Mills theory in non-commutative 
geometry as it was introduced by Connes and Lott [ 1,2], which allows us to fix our notation. 

A comprehensive presentation of this subject can be found in [2,9,10]. 
Yang-Mills theory is formulated on vector bundles. In the algebraic language a vector 

bundle is a finitely generated projective module over -A which we denote by C. Any finitely 
generated module C can be obtained from a free module Co = .A N with the help of  some 
idempotent e E .AN x N, which means that we can write ~" = e . A  N . In our case, the structure 

of  ,4 = C(I,  .As) implies that g = C(I, ~s), where gs is a finitely generated projective 
module over .As. 

Furthermore we need a Hermitian structure on E, i.e. a sesquilinear form 

(-, ")c : S x ~" > .,4 (6.1) 

with the following properties: 
- (A~', Br/)E = A*(~', r/)EB, '¢~', r/ E C, A, B E -A; 

- (C, ¢')E -> 0, vCEC; 
- C is self dual for (., ")c. 

If we write C = e - A  n the Hermitian structure requires that e is self-adjoint. 
We extend E to a right module ~ over J20-A, 

gk = C ®A 12~-A, g = E ®A 12D-A (6.2) 
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and also 

(', ")g : g × g ) ar2DA. (6.3) 

A connection is defined as a linear map 

V : gk ) gk+l (6.4) 

such that 

V(~'w) = V(~')w + ( - 1 ) k d w ,  ~" e gk, w E ~ D A .  (6.5) 

One also requires that the connection is compatible with the metric (., .)g, which for 

Euclidean K-cycles, i.e. for D t = D, is equivalent to the condition 

(~, Vr/)g - (V~, r/)g = d(~', rl)g, ~', r / •  g. (6.6) 

The set of  compatible connections form an affine space and for any two compatible con- 

nections V, V' we have 

V - V'  = A • HomA(g,  g ®A ~ l A ) .  (6.7) 

Note, that the definition of  a compatible connection depends on the definition of the 

.-operation on ~2A and the choice of  D for the K-cycle over A. In our case we have 

D~* = Ds and Dt t = - D r .  Thus condition (6.6) is valid only on the space-like part of the 
connection. For the time-like part of  the connection the compatibility condition reads 

(~, Vtrl)g + (Vtff , r/)g = d t ( ( ,  iT)g, ~, r 1 • £.  (6.8) 

One can check (see, e.g. [10]) that for g = e A  N 

V0~" = ed~,  ~ ~ g (6.9) 

defines a compatible connection. Thus any compatible connection V can be written as 

V = V0 + A ,  A ~ HomA(g,  g ®A ~21DA) • (6.10) 

Here we used that the restriction on V to g already defines the connection uniquely on g. 

The curvature F is obtained by taking the square of the connection 

F = V 2 = e(de)  2 + edeote + edote - eotde + eoteot • Horn 4(g,  g ®A 122A) 

(6.11) 

with e~e = A and c~ • ,,4 N×N ®A #21,'4. 

Connection and curvature transform covariantly under unitary transformations U (~) = 

{u • End a(g)  [uu* = u*u = 1},i.e. 

F 1 = uFu* ,  V I = u V u * ,  (6.12) 

from which we infer that the vector-potential A transforms as follows: 

A t = uAu*  + udu*.  (6.13) 
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The inner product o n  A"2D.A and the Hermitian structure on C induce a natural inner 
product on Hom a(g, C ®.4 12~.A) for any k. We want to construct this product explicitly 
and therefore we note that any T 6 Hom a(E, E ®.a I2~.A) can be written as 

N 

r : Z eikt°rselj '  tOkl E A'2kD'A. 
r, S : I  

(6.14) 

In this notation the inner product (., .) on Hom a(£, C ®.a I2ko'A) can be defined as 

(., .) : Hom a(S, C ®.a S2fg.A) x Hom a(C, C GA Oko'A) > C°C(I), (6.15) 

(T (1), T (2)) = trTr,o(cs(T(1)t)cs(T(2))lD s I-d)s 

N N N 

Z ~ Z (l)e e' " (2)- ' : (erjWsr ks, jpOapqeqkls, 
j , k = l  r , s = l  p , q = l  

to(l)  (2) E ~t2k'A. rs , tOpq 

(6.16) 

We use this inner product to define the Lagrange function L for Yang-Mills theory in 
non-commutative geometry, 

L(A) = - ¼ ( F , F )  ~ C~(1) .  (6.17) 

The action S for Yang-Mills theory is obtained by integrating the Lagrange function L over 
time 

t2 t2 

f 'f S(A) = dtL(A) = - ~  dt(T, T). 

tl tl 

(6.18) 

So far we have discussed the general case where E is a finitely generated .A-module. From 
now on we will restrict ourselves to the case where E = .,4 s is a free module. However, 
note that the formalism which will be presented in the following can be generalized to 
finitely generated .A-modules. The reason for the restriction is just to avoid unnecessarily 
complicated formulas. 

Because of Lemma 5 there is also an orthogonal decomposition of Hom a (C, E ®.4 I2kD'A) 
with respect to the inner product (., .): 

Hom.a(g, ~ ®.4 I-2kD'A) = Homut(C, ~ ®.a I2~.A) ~ Hom a(E, E ®.a S2~-l.Adt) 

(6.19) 

and therefore we can decompose F as follows: 

F = F s t  + B ,  
Fst : d t A s  q- VsAt E Hom a(£, ,f ®.4 12~cAdt), 
B = dsAs + A  2 ~ Hom a(C, E ®.a I2~.A), 

(6.20) 



W. Kalau/Journal of Geomet~ and Physics 18 (1996) 349-380 369 

whereAs e Hom a(g,  ,~ ®.4 S2~A) is the space-like part ofA andAt e HomA(E, g ®A 

.Adt) is the time-like part ofA. Vs = ds + A s  denotes the space-like part of the connection. 

With this decomposition L becomes 

L -~ - ¼ ( ( F s t , F s t )  + (B,B)) ,  (6.21) 

where the first term on the right hand side is positive and the second term is negative. 
Now we define the canonical momenta in the usual way, namely the variation of L with 

respect to the time derivative of the variables at some fixed time t. In our case we have to 

vary L with respect to dtA. We find that 

6L 1 l * 
Es -- - -  -- (Fst, ") ~ HomA(g, ~" ®.a I 2 • A d t ) t ,  (6.22) 

3dtAs 2 

3L 
Et -- - -  -- O. (6.23) 

6dtAt  

1 * Here Horn a(g, g ®.4 S2acAdt)t  denotes the image of the map (at some fixed time t), 

• : ~.t > "Tst, * (T) = (T, .) , T c 7", (6.24) 

restricted to Hom a(,f, ~e ®.a S2Jv.Adt), where ~ t  is the Hilbert space completion of 

Hom a(g,  c ®.a a'2)v..Adt) and T~ is the dual Hilbert space of ~ t .  However, we use 
1 * the map , - I  to identify Hom a(C, ,5' ®.a S2N.Aclt) t with Hom a(g,  E ®.4 a"2)v'.Adt)t and 

thus we consider the canonical momentum £ as an element of Hom 4(S, ~e ®.a I21 .Ad t ) , .  

As in usual Yang-Mills theory we see that there are no canonical momenta for Af. Thus 

Eqs. (6.23) are primary constraints. 
We define the Hamiltonian H as 

H = E ( d t A )  - L = l ( - ( E s , E s )  + ( B , B ) )  - ( V I E s , A t )  (6.25) 
= Ho - G(At ) ,  

Ho = ¼ ( - ( E s , E s )  + ( B , B ) ) ,  G = ( 7 s E s , A t ) ,  (6.26) 

where 

V~ • HomA(E, E ®A J2~.A) > HomA(E, C ®A Y2~-IA) (6.27) 

is defined by 

(T1, VsT2) =- (V*TI, T2), 

Tl ~Hom.a(E,g®.aa '2koA),  T 2 6 H o m . a ( g , g ® A S ' 2 k o - l . 4 ) .  (6.28) 

Such a map exists because of the assumption (5.29). Note that H0 is positive since it is 
(Es, Es)  <_ O. As one may have expected, the Hamiltonian for Yang-Mills theory in non- 
commutative geometry is formally exactly the same as for conventional Yang-Mills theory. 
However, the Hamiltonian in Eq. (6.25) is defined purely algebraic and therefore still makes 

sense in cases where there is no space-time manifold. 
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7. The Poisson bracket and time evolution 

From the discussion of the previous section we infer that the canonical phase-space F0 

of Yang-Mills theory in non-commutative geometry is 

Fo C Hom.4(£, £ ®.a ~C2~v'..A.dt ) t • Hom~4(£, £ ®A I2~VA)t, (7.1) 

where the subscript t indicates that we have fixed the time t when the momenta were defined. 
Thus the elements of the phase-space F0 do not have any time dependence. More generally, 
we define for any k 

HomA(£, £ ®A S2*oA)t = 

where 2-t is the graded ideal, 

HomA(£, £ ®A g2~A) 
(7.2) 

Zt ---- {Z E HomA(£, £ ®A 12b.A.)[Z(t) ---- 0]. (7.3) 

Since from now on all objects are considered at some fixed time t we drop the subscript t 
in order to simplify notation. 

However, there are some restrictions on the elements of F0. The first one is a reality 
constraint on the variables which originates from the condition that A is a compatible 
connection, i.e. 

A t = A. (7.4) 

Since 

E = - d t A  - VsAt,  (7.5) 

the compatibility condition on A implies that 

E + = - E .  (7.6) 

Thus the canonical phase-space of Yang-Mills theory in non-commutative geometry is 

F0 = {(A,E) ~ HomA(£, £ ®A ~2X.Adt)t 

~HomA(£,  £ ®A 12~.A)t I (A t , E  +) = (A, - E)}. (7.7) 

In Eq. (7.7) we also have used the fact that there is no canonical momentum for At and 
hence this variable plays the role of a Lagrange multiplier. Thus we can read off from 
Eq. (6.25) the secondary constraint on the elements A, E of Fo (we suppressed the index 
s), namely 

G(At)  : (V*E, At)  : O, VAt ~ HomA(£, £ ®.4 Adt ) .  (7.8) 

This is the GauB-law in non-commutative geometry. 
However, we have not defined a Poisson bracket for this space so far. A Poisson bracket 

is a antisymmetric linear map {., .} on a suitable space of functions C on F0. Therefore we 
first have to define C. 
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We take for C the algebra of functions on Fo which contain arbitrary finite powers of the 

elements A,  E ~ Fo and their derivatives (of finite order). For any w 6 ~2DA we define 

w(2k '0) tO : =  (d*ds)kw, w(0.2k)w := (dsd*)kw, 
t o (2k+l ,0 )  w : =  (dsd,)kdsw ' //)(0,2k+1)//3 : =  (cl.ds)kd.w" (7.9) 

General combinations of derivatives are denoted by w (k, t) = w(k. o) + w(O, tj,  w E I-2DA. 
Those elements are well defined because of assumption (5.29). 

Furthermore we need the analogue of partial integration in non-commutative geometry. 
For this purpose we define for any k > 0 the map prk, 

prk : yrD(~Q.A) > S2~.A, (7.10) 

by the equation 

(v, prk(W))s = Tr~o(Cs(V)*WlDsl-a)s, Yv c S'2koA, W ~ zro(S2A). (7.11) 

Again assumption (5.29) ensures that this map exists. With the help of this map we can 
define the analogue of partial integration for all v 6 12ko.A, W E cs (I20¢4) by 

Tr~o(cs(dsv)WlOs I-d)s = -Tr~o(Cs(V)Cs(d* prk+l (W))IO,~ I d)s, 
Trio (cs (d; v) W lVs [-d),~ = -Trio (Cs (V)Cs (ds prk _ 1 ( W))ID, [-J )s. (7.12) 

It is convenient to consider the subalgebra 79 (F0) of the algebra of continuous maps from 
F0 to Horn a(~', C ®,4 zrv(Y2A)), which is generated by elements P(m j' k) of the form 

p(j,k) = C s ( P r m ( C s ( Z l ) .  " . C s ( Z n ) ) ( j , k ) )  ' j , k  > 0, n > 0 (7.13) 

with 

zl ~ {A,E, No, Ns,Nt}, (A,E) E Fo. (7.14) 

The elements N, Ns, Nt with 

N c HomA(cq,,Y), N * = - N ;  
Ns C Hom a(E,E®~t  S2~-,A), Nts=Ns;  (7.15) 

Nt E HomA(E, ~ ®A .Adt), Nt + = --Nt 

play the role of test functions. We obtain C c C(F0, C) by taking the trace of the elements 
in 79 

C := {F ~ C(F0, C) b F = trTro~(PIDsl-a)s,P ¢ 79}. (7.16) 

Having specified the space of functions on F0 we define the Poisson bracket {., .} with the 
help of a functional G(., .) 

{tr Tro,(Pl IDs I-d)s, tr Trio(P2 IDs I-d)s } = tr Tr~o(G(PI, P2)I Ds I-d)~ 
= -trTr~o(G(P2, Pl)lDsl-d)s, (7.17) 

The functional G(., .) is the non-commutative generalization of the 6-distribution which is 

defined by the following rules: 
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For any Pp, Pi E P, 1 ( p 5 k, 1 5 q F 1 it is 

trTr,(G(Pt .‘.Pk, P/... P[)lDsl-d)s 

= 
cc tfb(Pcp,(l) . . . p@k-1) 

CPk CPI 

x G(Pcpk(k), p;p,~,~)p~pl(,) . . . p;p,(&-d)s~ (7.18) 

where ccp, denotes the sum over the cyclic permutations of the first k indices and cCp, 
denotes the sum over the cyclic permutations of the last I indices. 

For any c,(d,u) E P, v E $,A and for any c,(d,*u> E P, v E f2Ld it is VP,, P2 E P 

trTr,(G(P,,c,(d,v))P21D,I-d), 
= -trTr,(G(P1,c,(~))c,(d,*prk+~(P~))l~sl-d),, 

trTr,(G(PI,c,(d,*v))P21D,I-d), 
(7.19) 

= -trTr,(G(P1,C,(v))c,(dsPrk-l(P2))1Dsl-d)s. 

And finally we define for the basic fields 21, z2 E (A, E, No, N,, Nt) 

trTr,(P,G(c,(z1),c,(z2))P21DsI-d), 

I 

trTr,(Ply”-‘ideP21D,I-d), if zt = A,z2 = E 
= -trTr,(Pty o-‘idEP21DsI-d)S ifzt = E,z2 = A (7.20) 

0 otherwise. 

This completes the definition of the phase-space and the Poisson algebra. 
The time evolution of the system is determined by the Hamiltonian H. For any element 

F E C it is 

P = (F, H), (7.21) 

where the dot denotes the time derivative of F. However, the Hamiltonian is not uniquely 
defined for this system since for some arbitrary A E Homd(E, E) we can add G(Adt) to 
the Hamiltonian without changing physics. This is possible because G(Adt) has to vanish 
on the physical subspace of fa. Furthermore, consistency requires that the condition (7.8) 
is time-independent which leads to the following equations: 

IG(Adt), Ho) = 0, (7.22) 

(G(Aldt),G(A2dt)) = 0. (7.23) 

Here x means that the equations hold modulo constraints. This implies that the constraints 
have to form a closed algebra. 

Let us check that Eqs. (7.22,7.23) are satisfied. We start with Eq. (7.23): 

(G(Atdr),G(A&)j = ~Tr,(G(c,(V,A~)y”c,(E),c,(V,A2)yoc,(E))ID,I-d), 

= -trTr,(c,(V,A,)(A2v”c,(E) - Y~~~V~)~~)I~,I-~~, 

+fbA(A~y”cdW - y”c,(E)A~)c,(V~A~)l~,I-d), 
= -G((AlA2 - A2Al)dt). (7.24) 
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Before we turn to Eq. (7.22) it is useful to compute the following bracket: 

tr Tr~o(Ay°G(cs (E), l cs (B)2)lOs I-d)s 

= - tr Tr,o (Acs (d 'B)  I Ds I -d)s + tr Tro, ((Cs (A)cs (B) - Cs (B)cs (A)) I Ds I -d)s 

= - t r  Tro,(Acs (V*~B) IDs I-a)s. (7.25) 

If we now insert A = cs(V~Ao) in Eq. (7.25) we obtain 

{G(Aodt) ,  ½ tr Tro~ (Cs (n)210s I -a)s  } = - t r  Tro~ (Cs (Vs A)cs (V'B)I  Os I -d).3 = 0. 

(7.26) 

The remaining part is 

{G(Aodt  ), l trTr,o(cs(E)21Dsl-d)s} = tr Tr~o(Aocs(E) 2 - c s ( E ) 2 A o ) l D s l - d ) ~  = O. 

(7.27) 

Hence the conditions (7.22) and (7.23) are fulfilled and the constraints G ( A d t )  form 

a complete set of first-class constraints generating the symmetry of the theory. Thus the 
observables of the theory are elements F 6 C with 

{G(Adt) ,  F} = 0. (7.28) 

The time evolution of the basic fields A, E can be computed by considering 

{trTr,o(cs(A)cs(A)lDsl-d)s,  H0} = trTro~(cs(A)(y°) - lcs(E) lDsl -d)s .  (7.29) 

From this and Eq. (7.25) we infer that the time evolution of the basic fields is (modulo 

gauge transformations) 

h, = - p r l  ( (F° ) - l c s (E) ) ,  E = - p r 2 ( F ° )  -I  VsB.  (7.30) 

Equivalently, with E = Eodt,  we can write 

I 

A = Eo, Eo = - N - ~ V * B .  (7.31) 

8. Examples 

In this section we apply the general construction, presented in the previous sections, 
to two examples, which are, more or less, standard (toy) examples in non-commutative 

geometry applied to elementary particle physics. In the first one the algebra ,As is a sum of 
two identical finite dimensional algebras of complex n x n matrices. This is basically the 
setting of the "Two-Point Space" as it was presented in [2]. The "Yang-Mills Theory" on 
this discrete space generates a Higgs potential and spontaneous symmetry breaking. 

In the second example the algebra of the first example is enlarged by the algebra of smooth 
functions on a compact Riemannian manifold. This leads to a gauge theory with conventional 
gauge bosons and Higgs bosons. The gauge symmetry of the model is U (n) x U (n) which 
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is broken to U(n).  One might interpret this example as a model with a left-right chiral 
symmetry which is broken spontaneously to a vector-like symmetry. However, since we do 
not yet have fermions included in our construction, such an interpretation might be a little 
bit artificial. 

8.1. The two-point space 

We start with the discrete space and take for As, 

As = C "xn  e C n×' ,  (8.1) 

which represents the space-like part of the algebra A in this example. A general discussion 
of Connes' generalized differential algebra constructed out of matrix-algebras can be found, 

e.g., in[17]. 
The complete algebra .A over space-time is then 

,A = C°°(R,  C n×n • cn×n). (8.2) 

The Hilbert space 7-is is 

Hs = (C n ~) C n) • C G @ C 2, (8.3) 

where C G denotes the "generation-space" with G > 1 and the C 2 factor is needed for the 

construction on y0. The representation rrs is given for all A = (AI, A2) 6 As as 

Yrs(A) = (O1 A2 0 )  ~ leg ~ 1C2" (8.4) 

We take for the space-like operator Ds 

(o s) o) Ds = f)s ' IZ t ® M, (8.5) 

where M ~ C G×G, M 2 ~ otlc~,  M 2 5~ 0 is a matrix in generation space which guarantees 

that the representation of two-forms on 7-/s is linear independent from the representation 
of.As. We choose/z 6 C n×n such that/z# t = #t/z = ~.21c,. Thus the space-like K-cycle 

(Ks, Ds) over .As is defined and the extension to a K-cycle (H, D) over .A along the lines 
described in Section 3 is straightforward: 

7-/= L2(II~, (C n @ C n) @ C G @ C2), 

-- lOt ' 

(8.6) 

where the 1 in the definition of Dt refers to the unit in C 2n ® C G. The representation zr 
maps elements of .A onto time-dependent blockdiagonal elements of the same form as in 
Eq. (8.4). The remaining element in the general set-up which we have to specify is the 
.A-module E. We take the simplest choice, i.e. £ = .4. 
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Now we can write down the connection one form A = At + A,: 

, (8.7) 

A 1, A2 are anti-Hermitian it x n matrices multiplied by dt and C$ is a complex n x n matrix 

of (matrix-) form degree 1, i.e. it is a n x II matrix multiplied by M. 

The curvature F = F,, + B of A is given by 

( 

0 &+A,(p+@)+(II.+ti)Az 

F.yt = 

$+dt + (w+ + 4+)A, +A2(w+ + b+) 0 1. 

W++P@++M+ 0 

(8.8) 
0 4JiP + CL++ + @+4 

Since the space-like part A, of the algebra A is finite dimensional the Dixmier-trace in the 

definition of the Lagrange function reduces to the normal trace and hence the Lagrange 

function L is 

L = -itr(F+F) 

= :tr[(&’ +A1 (CL + 4) + (P + @)A2) 

x(4+1” + (P+ + @+)A1 +.42b+ + @+))I - V(4) 

with 

V(4) = ~tr[W+ + CL@+ + &$+)(#+P + k+@ + 4+4)1. 

Now we turn to the Hamilton formalism and find for the momentum E, 

(8.9) 

(8.10) 

(8.11) 

with 

n = d+dt + (p+ + @+)A, +A&+ + @+) . (8.12) 

Thus the Hamiltonian H = HO - G(A,) is given by 

HO = tr(rr+rr) + V(4), (8.13) 

WA,) = trW(D, +&)A, + EA,(D, +A,)]. (8.14) 

The Gaul.%law constraints 

G((Al,Az)dt) = 0, (Al,A2) = A E d.,, A+ = -A (8.15) 

generate the Lie-algebra of the U(n) x U(n) symmetry group. The phase-space variables 
transform as follows: 

&r = A2n - ITA~, W=AI(~J+~.)-(~+/J)A~. (8.16) 
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The inhomogeneous transformation property of  4) is due to the fact that 4) is part of  the 
connection in this formalism. However, a substitution 

~o = 4) + / z  (8.17) 

leads to a homogeneous transformation property 

~g0 = Al~0 -- ~pA2. (8.18) 

The potential V reads in this new variable 

V(9) = ¼tr(cpgt - ~.2)(9t~0 - -  ~2 ) .  (8.19) 

For the time-evolution of the system we find 

~b = yt "?, ~ = l [ ~ o ? ( ¢ p t c p  _ ~2)  + (~0¢p1 _ )~2)(p?]. (8.20) 

We see that there are two configurations in phase-space, which are stable under time evo- 
lution. The first one is ~r = 0, ~o = 0, which is metastable and zr = 0, (pt~o = ~2 which 

is stable. The second configuration is the vacuum expectation value of the Higgs-field. By 
choosing for the vacuum expectation value ~o0, 

~o0 = lX, (8.21) 

we infer from the transformation rule (8.18) of  ~0 that the little group of ~00 is the diagonal 

U(n) subgroup of U(n) x U(n). This shows that Yang-Mills theory on discrete space 
generates spontaneous symmetry breaking and thus we have translated this appealing result 
of  Connes and Lott [1] into the Hamilton formalism. 

8.2. Yang-Mills theory on space-time x two-point space 

In this second example we utilize the result of  the previous example to construct a Yang-  
Mills theory with spontaneously broken symmetry on a four dimensional Minkowskian 
space-time. We assume that the space-t ime manifold M has the topology M3 x R where 

/143 is a compact manifold. For this example let us take for M3 the one point compactification 
of R 3, i.e. M3 = S 3. The algebra ,.4 is of  the form 

A = C°°(M) ® ( C  nxn  ~ C n × n )  . (8.22) 

The space-like part of  the algebra is 

,as = c ° ° ( s  3) @ ( c  nxn ~ c  nxn) 
= co°($3)  ® ,amat- (8.23) 

For S 3 there is a K-cycle  (H3, D3) over C°°($3), where 7-/3 denotes the square integrable 
spin-sections over S 3 and D3 denotes the Dirac-operator on S 3, which leads to the usual 
de Rham algebra. The K-cycle  (7-/mat, Dmat)  has been specified in the previous example 
(the subscript "mat"  is introduced in order to distinguish objects referring to the discrete 
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part of the algebra from the other objects). Usually one obtains a K-cycle over an algebra 

which is a tensor product of two algebras by taking the product K-cycle of the K-cycles 

over the factor algebras. However, there is one difficulty in our case. For the definition of 

the operator D of the product K-cycle one needs a grading on one of the factor K-cycles. 

Since S3 is odd-dimensional there is no such grading on the Clifford-bundle over S3. On the 

other hand for the Clifford-bundle over R x S3 there is grading given by y5 = iy” y ’ y2y3. 

Thus we can take the product K-cycle (7-1, D) over A with 

D = 04 8 l,,t + y5 @ Dmat, 'FI = 7l4 f3 R,,t , (8.24) 

where DJ = ypLaW denotes the Dirac operator on M = R x S3 and X4 is the space of 

square integrable spin-sections over M. Since a Dirac operator on a manifold with topology 

03 x M3 can always be decomposed in a time-like part Dr and a space-like part D3 the 

space-like K-cycle (7&, D,) over A, is 

D.v = 03 8 l,,t + y5 8 Dmt, XT = 83 8 xmt. (8.25) 

Again we choose for the d-module & = A. 

The connection A = At + A, for this model is 

(8.26) 

At is the same as in the previous example but on the block-diagonal of A, there are now 

the space-like parts of the conventional gauge connections A 1 and AZ, i.e. A,y 1 and A.9 are 

anti-Hermitian matrices multiplied with space-like one forms. 

The corresponding curvature is 

F 
$dt +&lb +@I 

stl 

Fst = 
+ (P + @k&2 

$+ dt + (I+ + 4+)At, 

+At&+ + 4+) 
F st2 

(8.27) 

where Bi, i = 1,2 denotes the space-like curvature of Ai, V,i is the corresponding covariant 

space-like derivative and 

Fsti = -&Ag dr + VsiAti. (8.28) 

Because of Connes’ trace theorem we know that in this case the Dixmier trace is equivalent 

to an integration over S3 and hence the Lagrange function is 
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L = - ~ t r  d3x(F*F) 

= _1 f d3 x (-V(~b) + tr[F2tl + Fs22 - B 2 - B 2 
2 J  

+(q~y0 +At l  (lZ + dp) + (Id + gb)At2)(q~ty 0 + (/zf + ~*)Atl +At2(/2* + gbf)) 

-(Oidpy i +Asl(/Z + ~b) + (/z + ~O)As2) 

x(Oid~fyi + (l~f + ~bf)Asl +As2(/zf + q~t))]) (8.29) 

with V(~b) given by Eq. (8.10). 
The canonical momenta for this system are 

E = E2 

with Jr defined in Eq. (8 .12)  and 

Ei = Fsti, i = 1,2. 

Thus we can determine the Hamiltonian Ho - G(At) to be 

H o = f d 3 x ( V ( ¢ ) + t r [ E ~  +E~ + zrtzr +B~ +B2 2 

"q-(Oi~y i + Asl(lz + dp) + (lz + $)As2) 

x(0iq~ty0 + (/zt + q~t)Asl +As2(/zt + q~t))]). 

Again the GauB-law can be summarized as 

= f d3x tr[E(Ds +As)At +EAt(Ds + A s ) ]  • G(At) 

The phase-space variables transform as follows: 

3Ei = AiEi - E i A i ,  i ----- 1,2. 

(8.30) 

(8.31) 

(8.32) 

(8.33) 

(8.34) 

The transformation rule for the fields ~r and 4) are determined by Eq. (8.16). By shifting 
q~ to ~o = ~b + /z  we obtain a field which transforms homogeneously under gauge transfor- 
mations. For ~*~o ---- 1~. 2 the potential is minimized and thus the symmetry is spontaneously 
broken. In the gauge 

9 = 1~., (8.35) 

we see that A+ = A1 + A2 correspond to the massless modes of the gauge fields and 
A_ = A1 --A2 correspond to the massive modes. 

9. C o n c l u s i o n s  

We have derived the Hamilton formalism for Yang-Mills theory in non-commutative 
geometry. For this purpose we exploited the special structure of .4 = C(I, .As) which 
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seems to be very natural since the topology of space-time in the conventional Hamilton 

formalism is M = R × 27. The first step was to show that the structure of the algebra 

together with an appropriately chosen K-cycle allows to identify the time-like part of the 

generalized differential algebra. Thus the notion of time obtains a well defined meaning in 

this context. 

The next step was to introduce the non-commutative generalization of integration over 

space-like surfaces via the Dixmier trace. This opened the possibility to apply the formalism 

to Minkowskian space-time by abandoning the ellipticity of the operator D of the K-cycle 

(~ ,  D) over A but maintaining the ellipticity of the space-like part Ds of D. However, in 

this case one is restricted to the non-commutative counterpart of integration over space- 

like surfaces. For the definition of Lagrange functions and Hamilton functions integration 

over space-like surfaces is sufficient. For the definition of actions one may use a hybrid 

formalism, i.e. one performs integration over the (possibly non-commutative) space-like 

surface via Dixmier trace and for the time variable one uses conventional integration. The 

structure C(I ,  .As) of the algebra ensures that this is possible. 

For the definition of the Poisson bracket we had to make some additional assumptions 

which we introduced at the end of Section 5. Especially the assumption which allowed us 

to define the adjoint of the operator d seems to be a brute force assumption. Although all 

assumptions we made are fulfilled for the examples we presented, a finer criterion tbr the 

existence of an adjoint of d seems to be desirable. 
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